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Summary of Technical Progress

Objectives: The overall objective of this research is to develop models to predict drop-size-
distribution evolutions due to droplet collisions and coalescence during processing within
the miscibility gap of bimetallic liquid-phase-miscibility-gap materials. The individual and
collective action of gravitational and nongravitational mechanisms on the relative motion
and coalescence of drops are considered.

Research Task Description: When bimetallic liquid-phase-miscibility-gap materials, which
are thought to have a variety of desirable properties, are cooled through the miscibility gap,
droplets rich in one of the metals form in the liquid matrix rich in the other metal. Droplet
coalescence and phase segregation then occur due to buoyancy and to thermocapillary and
other nongravitational mechanisms. In order to gain a predl"ctive understanding of these

phenomena, population dynamics models are used to follow drop-size distribution evolutions
in time as the droplets grow due to collisions and coalescence. Continuous drop size dis-
tributions are discretized into a large number of categories. Drops of a given mass are
destroyed by coalescing with other drops and are formed by the coalescence ofsmaller drops.
The population dynamics model tracks the formation anddestruction of drops in each size
category.

The relative motion of drops which gives rise to their collision and coalescence is considered
to occur by gravity sedimentation, Marangoni migration, Brownian motion, and bulk flow.
These collision mechanisms are considered either individually or collectively in the pop-
ulation dynamics models. In general, different mechanisms dominate for different pro-
cessing conditions, materials properties, and drop-size ranges.

The collision kernals appearing in the population dynamics models require expressions for
the collision rate between drops of two different sizes. Classical expressions attributed to
Smoluchowski are improved to include attractive, repulsive, and hydrodynamic interactions
between drops. In particular, trajectory calculations are used to predict collision efficiencies,
which represent the ratio of the collision rate with these interactions to the Smoluchowski
collision rate without these interactions, as functions of the size ratio, viscosity ratio, and
other relevant dimensionless parameters.

Accomplishments: During the three years of NASA support, the following progress was
made:

o A computer program has been completed for solving the population dynamics model
to follow droplet size evolutions with time in homogeneous dispersions due to col-
lisions arising from gravity sedimentation, Marangoni migration, and/or Brownian
motion. Some of the key results are that a bimodal initial distribution will exhibit
much more rapid coalescence due to gravity sedimentation or Marangoni migration
than will a unimodal initial distribution (Figure 1), a unimodal initial distribution
will evolve into a bimodal distribution and then into a shifted and broadened uni-

modal distribution (Figure 2), and that coalescence may be greatly reduced by
antiparallel alignment of the gravity vector and the temperature gradient (Figure
3).

. Collision efficiencies for Brownian motion (Figure 4) and gravity sedimentation
(Figure 5) for drops having a range of viscosity and radius ratios have been computed
both in the presence and absence ofattractive forces. A key result is that, in contrast
to rigid particles, spherical liquid drops have nonzero collision efficiencies in the
absence of attractive forces.

. Theoreticalwork has been completed to predictcollisionefficienciesforMarangoni
migration oftwo drops ofdifferentsizesina temperature gradient Example results
are shown inFigure 6. Note thatthe collisionefficienciesforthermocapillary motion
are larger than those for gravity motion, because of the more rapid decay of the
velocityfieldscreated by drops undergoing thermocapillary motion, provided that
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the thermal conductivity of the drops is not too large. Surprisingly, however, the
relative mobility function along the line-of-centers can become negative for large
thermal conductivities (Figure 7), indicating that the smaller drop moves away from
the larger drop and that there is a region of closed trajectories which prevents
coalescence in the absence of attractive forces (Figure 8).

In relatedexperimental work, drop sizedistributionsofbutyl benzoate inwater are
followed with time by holography as coalescenceoccurs due to gravity motion. We
are alsoexamining the interactionoftwo drops with video microscopy. An example
ofcoalescence isshown inFigure 9,and measured relativetrajectoriesoftwo drops
are shown in Figure 10 to be in good agreement with theory.

Theoretical work on combined mechanisms fordrop coalescence has been focused
on buoyancy and Marangoni motion with the gravity vector aligned parallelor
antiparallelto the temperature gradient. Our resultsshow that there isa finite
region inparameter space forwhich no collisionsoccur (Figure 11).This isbecause
the interactionoftwo drops due to thermocapillary migration decays more rapidly
(as 1/r3)with the separation distance (r)than does the interactionof two drops in

gravitymotion (which decays as 1/r).As a result,the largedrop which moves toward
a small drop below itdue to gravity may reach a separation distance where the
initiallyweaker thermocapillary effectsjust balance the buoyancy-driven relative

motion, and so the separation distance would then no longer decrease (Figure 12).
With appropriate antiparallelalignment of buoyancy and Marangoni velocities,a
polydisperse suspension of small drops ispredicted to evolve intoa monodisperse
suspension of largerdrops (Figure 13).

Time scales have been determined for phase segregation and drop coalescence,

together with criteriaforpredictingwhether ornot significantcoalescencewilloccur
riortophase segregation.A computer model has been developed tosolvepopulation
alances for drop sizedistributionswhich vary in space due to buoyancy or ther-

mocapillary motion. Resultsshow thatthe phase segregationrateinitiallyincreases

due to coalescence and subsequently decreases as the largerdrops migrate out of
suspension (Figure 14).

Physical data on a variety of bimetallicand transparent immiscibles have been
collected,and dimensionless parameters representingvarious effectshave been
tabulated as functionsofdrop size.Data on com_p0siteHamaker constants (forvan
der Waals attractions)and temperature coefficientsof interfacialtension (for

thermocapillary migration) are sparse,and order-of-magnitude estimates are typ-
icallyused. Calculationsofcollisionefficiencieshave been made forbismuth drops
in a zinc melt, forethylsalicytatedrops in diethylene glycol,and forlead drops in
an aluminum melt.
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Figure la. Time evolution of the cLrop,size
distribution for a bimodal initial distri-
bution of bismuth drops undergoing
15hu-angoni migration in molten zinc.

Figure lb. Time evolution of the.dTop "size
distribution for a unimodal initzal distri-
bution of bismuth drops undergoing
Marangoni migration in molten zinc.
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Figure % Time evolution of the .drop. size
distribution for a unzmodal initial distri-
bution of water drops subject to gravity
sedimentation in air.
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Figure 8. Mass average drop radius at t=45
seconds due to combined gravity and
Marangom motion of bismuth drops in
zinc as a function ct gravity strength
relative to normal for parallel (/> O) and

antiparallel (i <0) orientation of gravity
_._e_o..r and temperature gradient. The

itial mass average radius is r_=2
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Figure 4. Collision efficlencies for viscous drops of various viscosity ratios (_) and
size ratios (_) undergoing Brownian motion in the absence of attractive
forces.
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Figure 7.

Collision efficienc4es as a function of the drop size rat/o (_.)for drops of various
thermal conductivity ratios (_c)and viscosity ratios (_) undergoing thermoca-

pillary migration in the absence of attractive forces.
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the absence of attractive forces.
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Figure 10.

Time sequence of approach and coalescence due to gravity of two castor oil
drops in a silicon fired.
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Dimensionless relative trajectories of two different sized castor oil drops
moving due to gravity in a silicon fluid. The symbols are experimental data
and the dashed lines are theory.
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The collision efficiency versus the ratio of buoyancy and thermocapillary
relative velocities for two widely spaced dropsof size ratio k = O_ for various
viscosity (_) and thermal conductivity ratios (k).
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Figure 12.
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Evolution of the size distribution of lead drops in an aluminum melt for
antipara]l, el alignment of the gravity vector (9_ m/s z) and temperature gra-
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The rate of phase separation versus time for a dispersion of bismuth drops
undergoing simultaneous buoyancy motion and coalescence/n a zinc meltin
containers of increasing height (left to right), the dashed curves are the cot-
responding results in the absence of coalescence.
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